Novel Solid-Phase Synthesis of 1,2-Dialkoxyindoles[†]

Zemin Wu* and Nicholas J. Ede

Mimotopes Pty, Ltd., 11 Duerdin Street, Clayton, Victoria 3168, Australia zemin_wu@mimotopes.com

Received June 23, 2003

ORGANIC LETTERS 2003 Vol. 5, No. 16

2935-2938

ABSTRACT

A novel solid-phase synthesis of 1,2-dialkoxyindoles on SynPhase lanterns is described. A unique C–C bond formation involving a nucleophilic displacement of a solid-bound aryl fluorine by dimethyl malonate afforded the arylnitro methyl ester, which upon treatment with tin(II) chloride dihydrate gave the *N*-hydroxyindolone. Alkylation of the *N*-hydroxyindolones afforded the corresponding *N*-hydroxy-2-alkoxyindoles, which were further alkylated to give the 1,2-dialkoxyindole. A library of 64 ($8R_1 \times 8R_2$) discrete 1,2-dialkoxyindoles was prepared using a color encoding technique on SynPhase A-series lanterns.

Indole nuclei have been considered to be one of the "privileged" substructures¹ since they are present in a wide range of natural compounds possessing biological activity. As a result, combinatorial solid-phase syntheses of indole libraries have attracted great interest over the past decade. Although numerous reports for solid-phase syntheses of indoles have appeared in the literature,²⁻¹⁵ the synthetic

(3) Wacker, D. A.; Kasireddy, P. *Tetrahedron Lett.* **2002**, *43*, 5189.

methodologies are confined to mainly the Fischer indole synthesis,¹⁴ palladium-catalyzed cyclization,^{4,5,9-13} intramolecular Wittig or Wittig-like reaction,^{3,15} and the Nenitzescu indole synthesis.⁷ Among them, the palladium-catalyzed cyclization strategy has dominated the solid-phase syntheses of indoles. Herein we report a novel methodology for solid-phase synthesis of indoles via *N*-hydroxyindolone as the key intermediate.

Recently, we reported the solid-phase synthesis of benzimidazole *N*-oxides on SynPhase lanterns via a tin(II) reduction-promoted intramolecular condensation of an in situformed hydroxyamino group with a carbonyl group.¹⁶ We considered using a similar strategy to synthesize *N*-hydroxyindolones and derivatives, which have been reported to be the key moiety of a number of biologically active compounds.^{17,18} The retrosynthesis of the *N*-hydroxyindolone **4** is illustrated in Scheme 1. Using the above-mentioned

(14) Hutchins, S. M.; Chapman, K. T. Tetrahedron Lett. 1996, 37, 4869.

(17) Kende, A. S.; Thurston, J. Synth. Commun. 1990, 20, 2133 and references therein.

[†]Part of this work was presented at the 16th Conference on Combinatorial Chemistry, April 21–22, 2003, Osaka, Japan.

⁽¹⁾ Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. J. Med. Chem. 1999, 42, 3251.

⁽²⁾ Macleod, C.; Hartley, R. C.; Hamprecht, D. W. Org. Lett. 2002, 4, 75.

⁽⁴⁾ Wu, T. Y. H.; Ding, S.; Gray, N. S.; Schultz, P. G. Org. Lett. 2001, 3, 3827.

⁽⁵⁾ Zhang, H.-C.; Ye, H.; Moretto, A. F.; Brumfield, K. K.; Maryanoff, B. E. Org. Lett. 2000, 2, 89.

⁽⁶⁾ Smith, A. L.; Stevenson, G. I.; Lewis, S.; Patel, S.; Castro, J. L. Bioorg. Med. Chem. Lett. 2000, 10, 2693.

⁽⁷⁾ Ketcha, D. M.; Wilson, L. J.; Portlock, D. E. *Tetrahedron Lett.* 2000, 41, 6253.

⁽⁸⁾ Tois, J.; Franzen, R.; Aitio, O.; Huikko, K.; Taskinen, J. *Tetrahedron Lett.* **2000**, *41*, 2443.

⁽⁹⁾ Smith, A. L.; Stevenson, G. I.; Swain, C. J.; Castro, J. L. *Tetrahedron Lett.* **1998**, *39*, 8317.

⁽¹⁰⁾ Collini, M. D.; Ellingboe, J. W. *Tetrahedron Lett.* **1997**, *38*, 7963.
(11) Fagnola, M. C.; Candiani, I.; Visentin, G.; Cabri, W.; Zarini, F.; Mongelli, N.; Bedeschi, A. *Tetrahedron Lett.* **1997**, *38*, 2307.

⁽¹²⁾ Zhang, H.-C.; Brumfield, K. K.; Maryanoff, B. E. *Tetrahedron Lett.* **1997**, *38*, 2439.

⁽¹³⁾ Zhang, H.-C.; Maryanoff, B. E. J. Org. Chem. 1997, 62, 1804.

⁽¹⁵⁾ Hughes, I. Tetrahedron Lett. **1996**, 37, 7595.

⁽¹⁶⁾ Wu, Z.; Ede, N. J. Tetrahedron Lett. 2003, 44, 2293.

⁽¹⁸⁾ Somei, M.; Sato, H.; Kaneko, C. Heterocycles 1983, 20, 1797.

Scheme 1. Retrosynthesis of *N*-Hydroxyindolone on SynPhase Lanterns

reductive—cyclization strategy, reduction of the arylnitro methyl ester **3** was expected to afford the hydroxyamino intermediate **4a**, followed by an intramolecular cyclization to give the desired *N*-hydroxyindolone **4**.

4-Fluoro-3-nitrobenzoic acid has been extensively used for the solid-phase synthesis of a wide range of heterocycles, typically via an N- or S-involved S_NAr replacement of the fluorine to form a C-X bond.¹⁹ We believed that a similar replacement of the solid-bound fluorine by a carbanion (Scheme 1, R = EWG) should take place, leading to C-Cbond formation and thereby easy assembly of the arylnitro methyl ester 3. In addition, Selvakumar and co-workers²⁰ and Ruhland et al.21 have respectively used the S_NAr displacement of fluorine on an o-nitrofluorobenzene with activated enolates, including malonates, for the solution-phase syntheses of heterocycles. Thus, for initial reaction optimization, 4-fluoro-3-nitrobenzoic acid was attached to polystyrene Rink amide SynPhase D-series lanterns 1 using a standard coupling procedure (Scheme 2) to give 2.22a Treatment of the lanterns 2 with dimethyl malonate/potassium bis(trimethylsilyl)amide (KHMDS) in NMP/toluene (1:1) at 60 °C for 4 h gave the arylnitro methyl ester 3 in 95% purity. This was confirmed by LC-MS and ¹H NMR analysis of the cleaved product.²³ The arylnitro methyl ester 3 was then treated with a solution of 0.5 M tin(II) chloride dihydrate in NMP at room temperature for 4 h to give the N-hydroxyindolone 4 in 94% purity. The determination of the structure of the N-hydroxyindolone 4, however, was more complicated than expected. Although the molecular weight 250 as shown by LC-MS (ES) was consistent with the proposed target molecule, the ¹H NMR indicated that it appeared to be a mixture of the N-hydroxyindolone 4 and its tautomer 1,2dihydroxyindole 5. It was hoped that alkylation of the

(21) Ruhland, B.; Leclerc, G. J. Heterocycl. Chem. 1989, 26, 469.

Scheme 2. Solid-Phase Synthesis of 1,2-Dialkoxyindoles on SynPhase Lanterns

(i) 4-fluoro-3-nitrobenzoic acid, DIC, HOBt, 20% DMF/DCM, rt, 16 h; (ii) dimethyl malonate, KHMDS, NMP/toluene (1:1), 60° C, 4 h; (iii) tin(II) chloride dihydrate, NMP, rt, 4 h; (iv) R₁X, DMF, 60° C, 18 h; (v) R₂X, DIEA, KI, DMF, 60° C, 18 h; (vi) 20% TFA/DCM, 1 h.

hydroxyl groups would stop the tautomerization, thereby assisting the elucidation of the structure. The solid-bound N-hydroxyindolone 4 was thus exposed to a solution of benzyl bromide in DMF at 60 °C for 18 h to give a product in 90% purity. LC-MS analysis clearly indicated that it was an alkylated derivative of 4. However, its ¹H NMR showed that it was not the expected N-alkoxyindolone 7, since there were only two types of aliphatic protons, with three protons $(\delta = 3.71 \text{ ppm})$ corresponding to the methoxy group and two protons ($\delta = 3.64$ ppm) corresponding to the benzylic methylene group. This confirmed that the alkylated product was the N-hydroxy-2-benzyloxyindole **6** rather than the expected N-benzyloxyindolone 7 (R_1 = benzyl). It is presumed that the enol-like 2-hydroxy group of the 1,2dihydroxyindole 5 is more nucleophilic than the N-hydroxy group, and the former was preferentially alkylated. Furthermore, it was observed that a partial second alkylation (on the *N*-hydroxy group of $\mathbf{6}$) occurred when the reaction was conducted for an extended time and under more forcing conditions (e.g., 80 °C). This observation has opened up a new methodology for the solid-phase synthesis of indoles and in particular 1,2-dialkoxyindoles, which have not been previously reported.

A selection of alkyl halides were reacted with the N-hydroxyindolone **4** using the above-mentioned mild alkylating conditions to give the N-hydroxy-2-alkoxyindoles **6**. To introduce a second point of diversity into the indole molecule via the N-hydroxy group, a variety of stronger alkylating conditions were attempted. For example, bases

⁽¹⁹⁾ Schwarz, M. K.; Gallop, M. A. Solid-Phase Organic Synthesis; Burgess, K., Eds.; Wiley-Interscience: New York, 2000; pp 81-117.

⁽²⁰⁾ Selvakumar, N.; Reddy, B. Y.; Kumar, G. S.; Iqbal, J. *Tetrahedron Lett.* **2001**, *42*, 8395.

^{(22) (}a) For more information on SynPhase lanterns, please refer to Mimotopes website (http://www.mimotopes.com). (b) SynPhase Technical Note STN 003-1 describing free chemistry transfer between A-, D-, and L-series lanterns is available at Mimotopes website. (c) Colored Spindles and Cogs can be purchased from Mimotopes.

⁽²³⁾ All analytical data were obtained from the cleaved products.

Table 1. Purity and Yield of 1,2-Dialkoxyindoles 9 ^{ee} (Schen
--

	R2							
R1	allyl	propyl	benzyl	3-chlorobenzyl	4- <i>tert</i> -butylbenzyl	4-fluorobenzyl	3-methoxybenzyl	3-methylbenzyl
allyl	84 (85)	83 (87)	85 (88)	76 (80)	76 (75)	81 (84)	67 (70)	72 (75)
benzyl	73 (80)	71 (80)	79 (83)	76 (81*)	78 (80)	80 (81*)	77 (80*)	73 (75)
4-fluorobenzyl	76 (80*)	80 (83)	75 (80)	64 (70)	74 (75)	80 (85)	78 (79)	54 (60)
3-methoxybenzyl	70 (75)	82 (85)	79 (84)	64 (70)	65 (70)	70 (71*)	73 (75)	73 (77)
4-methylbenzyl	63 (70)	80 (82)	73 (73)	73 (72)	66 (70)	75 (77)	65 (70)	82 (85)
4-bromobenzyl	75 (77)	79 (80)	67 (70)	77 (78)	75 (78)	79 (80)	66 (70)	74 (76)
3-chlorobenzyl	69 (70)	77 (81)	64 (70)	66 (72)	70 (73)	69 (70)	66 (65)	70 (70)
3,5-difluorobenzyl	59 (66)	67 (70)	56 (65)	55 (65)	51 (55)	59 (60)	53 (55)	77 (75)

^{*a*} Notes: (1) HPLC purities are given as area %; (2) all compounds gave the expected molecular ions in positive ion ESMS; (3) selected samples gave satisfactory ¹H and ¹³C NMR spectra; (4) crude yields given in parentheses were based on the weight of dried samples and were consistent with the ¹H NMR quantitation results of selected samples* using 1,1,1-trichloroethane as an internal standard.

such as NaOCH₃, NaH, KHMDS, DBU, or DIEA were used to deprotonate the *N*-hydroxy group, while KI was added to facilitate the nucleophilic displacement. After some experimentation, the *N*-hydroxy-2-benzyloxyindole **6** (R_1 = benzyl) upon treatment with 3-methoxybenzyl bromide in the presence of KI and DIEA in DMF at 60 °C for 18 h was cleanly converted to the 1,2-dialkoxyindole **9** (R_1 = benzyl, R_2 = 3-methoxybenzyl) in good purity (77%). The structure of the 1,2-dialkoxyindole **9** was confirmed by LC-MS, ¹H NMR, and ¹³C NMR. Using the above-mentioned alkylating conditions afforded 1,2-dialkoxyindoles **9** when a variety of R_2X were reacted with the *N*-hydroxy-2-benzyloxyindole **6**.

To demonstrate the application of this new methodology for the solid-phase synthesis of 1,2-dialkoxyindoles, we synthesized a library of 64 ($8R_1 \times 8R_2$) 1,2-dialkoxyindoles on SynPhase A-series lanterns,^{22a} which have approximately twice the loading of D-series lanterns (75 vs 35 μ mol). It should be pointed out that since the chemical reactions can be freely transferred between SynPhase A-, D-, and L-series lanterns, no reoptimization was required for the library synthesis.^{22b} To facilitate the library synthesis, a color

Figure 1. Color encoding directed split-and-pool library synthesis on SynPhase lanterns.

encoding directed split-and-pool technique was employed. Thus, 64 lanterns 4 were divided into 8 groups of 8 lanterns and each group of lanterns were attached to colored Spindles^{22c} (for R_1 , 8 colors in total), as shown in Figure 1. To each of the Spindle-attached lanterns was loaded a colored Cog (for R_2 , 8 colors in total, Figure 1). For the first combinatorial step, the lanterns 4 with the same color Spindles were pooled together to react with one of $8 \times R_1 X$ (8 reactions in total). After the reaction, all lanterns were combined for washing to give the lantern-bound N-hydroxy-2-alkoxyindoles 6. For the second combinatorial step, the lanterns 6 with the same color Cogs were pooled together to react with one of $8 \times R_2 X$ (8 reactions in total). All lanterns were then combined for washing to give 64 discrete lantern-bound 1.2-dialkoxvindoles 9. Each lantern-bound 1.2dialkoxyindole can be simply identified by the color of the attached Spindle (for R_1) and Cog (for R_2). Upon TFA cleavage, 1,2-dialkoxyindoles 9 were obtained typically in 75% purity and in 80% yield based on the initial loading of lanterns (Table 1). The whole library was analyzed by LC and LC-MS, and selected samples were characterized by ¹H and ¹³C NMR (see Supporting Information).

In conclusion, a novel methodology for an efficient and convenient solid-phase synthesis of indoles was developed on SynPhase D-series lanterns, which involves the formation

⁽²⁴⁾ Typical procedure for the synthesis of 1,2-dialkoxyindole 9 from lantern-bound 4-fluoro-3-nitrobenzoic acid 2: Each A-series lantern 2 was treated with 1.0 mL of a solution of 0.25 M dimethyl malonate and 0.25 M potassium bis(trimethylsilyl)amide in NMP/toluene (1:1) at 60 °C for 4 h. The reagent solution was decanted, and the lanterns were washed with DMF $(3 \times 3 \text{ min})$ and DCM $(3 \times 2 \text{ min})$ and air-dried to give 3. Each lantern 3 was treated with 1.0 mL of a solution of 0.5 M tin(II) chloride dihydrate in NMP at room temperature for 4 h. The reagent solution was decanted, and the lanterns were washed with DMF (3 \times 3 min), 20% H₂O/THF (60 °C, 4 \times 10 min), MeOH (2 \times 3 min) and DCM (3 \times 2 min) and air-dried to give 4. Each lantern 4 was treated with 1.0 mL of a solution of 0.5 M alkyl halide (R1Br) in DMF at 60 °C for 18 h. The reagent solution was decanted, and the lanterns were washed with DMF (3 \times 3 min) and DCM (3 \times 2 min) and air-dried to give 6. Each lantern 6 was treated with 1.0 mL of a solution of 1.0 M alkyl halide (R2Br), 1.0 M DIEA, and 1.0 M KI in anhydrous DMF at 60 °C for 18 h. The reagent solution was decanted, and the lanterns were washed with DMF (5 \times 3 min), MeOH (60 °C, 4 \times 10 min), DCM (3×2 min) and air-dried to give 8. Each lantern 8 placed in a well of a Beckmann tray was treated with 1.2 mL of 20% TFA/DCM for 1 h. The lanterns were removed, and the cleavage solution was evaporated in a SpeedVac to give the final product 9, which was dissolved in 10% H₂O/CH₃CN for LC and LC-MS analysis.

of the key intermediate *N*-hydroxyindolone and subsequent conversion to 1,2-dialkoxyindoles by consecutive alkylations. This methodology has been used to synthesize a library of

64 discrete 1,2-dialkoxyindoles on SynPhase A-series lanterns.^{24,25}

Acknowledgment. The authors are thankful for the assistance of Heather Patsiouras and Ben Gubbins in obtaining analytical data and Jeffrey Leitch in the preparation of the manuscript.

Supporting Information Available: Analytical data of LC, LC-MS, and NMR for the selected 1,2-dialkoxyindoles.³ This material is available free of charge via the Internet at http://pubs.acs.org.

OL035153G

⁽²⁵⁾ Representative analytical data of 1,2-dialkoxyindole **9** (R₁ = benzyl, R₂ = 3-methoxybenzyl): brown oil, 28 mg, yield 77% ("purified yield" 62%, as determined by ¹H NMR quantitation); ¹H NMR (400 MHz, CDCl₃) δ 3.62 (dd, AB system, J = 13.6 Hz, 2 H), 3.74 (s, 3 H), 3.77 (s, 3 H), 4.53 (d, J = 10.8 Hz, 1 H), 4.89 (d, J = 10.8 Hz, 1 H), 6.66 (d, J = 7.2 Hz, 1 H), 6.78 (s, 1 H), 6.90–6.86 (m, 4 H), 7.19–7.07 (m, 4 H), 7.44 (d, J = 8 Hz, 1 H), 7.56 (d, J = 8 Hz, 1 H); ¹³C NMR δ 39.61, 53.55, 55.33, 59.44, 78.75, 106.82, 114.97, 115.45, 122.26, 122.86, 124.42, 127.51, 128.05, 128.19, 129.72, 130.11, 132.86, 133.30, 135.37, 141.58, 159.79, 160.09, 160.49, 168.19, 168.36, 171.09; LC-MS (ES) $t_{\rm R}$ 8.11 min, m/z = 461 (M + H); HPLC $t_{\rm R}$ 8.34 min, 77% (214 nm). For more analytical data of library members, see Supporting Information.