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ABSTRACT

A novel solid-phase synthesis of 1,2-dialkoxyindoles on SynPhase lanterns is described. A unique C−C bond formation involving a nucleophilic
displacement of a solid-bound aryl fluorine by dimethyl malonate afforded the arylnitro methyl ester, which upon treatment with tin(II) chloride
dihydrate gave the N-hydroxyindolone. Alkylation of the N-hydroxyindolones afforded the corresponding N-hydroxy-2-alkoxyindoles, which
were further alkylated to give the 1,2-dialkoxyindole. A library of 64 (8R1 × 8R2) discrete 1,2-dialkoxyindoles was prepared using a color
encoding technique on SynPhase A-series lanterns.

Indole nuclei have been considered to be one of the
“privileged” substructures1 since they are present in a wide
range of natural compounds possessing biological activity.
As a result, combinatorial solid-phase syntheses of indole
libraries have attracted great interest over the past decade.
Although numerous reports for solid-phase syntheses of
indoles have appeared in the literature,2-15 the synthetic

methodologies are confined to mainly the Fischer indole
synthesis,14 palladium-catalyzed cyclization,4,5,9-13 intramo-
lecular Wittig or Wittig-like reaction,3,15 and the Nenitzescu
indole synthesis.7 Among them, the palladium-catalyzed
cyclization strategy has dominated the solid-phase syntheses
of indoles. Herein we report a novel methodology for solid-
phase synthesis of indoles viaN-hydroxyindolone as the key
intermediate.

Recently, we reported the solid-phase synthesis of benz-
imidazole N-oxides on SynPhase lanterns via a tin(II)
reduction-promoted intramolecular condensation of an in situ-
formed hydroxyamino group with a carbonyl group.16 We
considered using a similar strategy to synthesizeN-hydroxy-
indolones and derivatives, which have been reported to be
the key moiety of a number of biologically active com-
pounds.17,18 The retrosynthesis of theN-hydroxyindolone4
is illustrated in Scheme 1. Using the above-mentioned
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reductive-cyclization strategy, reduction of the arylnitro
methyl ester3 was expected to afford the hydroxyamino
intermediate4a, followed by an intramolecular cyclization
to give the desiredN-hydroxyindolone4.

4-Fluoro-3-nitrobenzoic acid has been extensively used for
the solid-phase synthesis of a wide range of heterocycles,
typically via an N- or S-involved SNAr replacement of the
fluorine to form a C-X bond.19 We believed that a similar
replacement of the solid-bound fluorine by a carbanion
(Scheme 1, R) EWG) should take place, leading to C-C
bond formation and thereby easy assembly of the arylnitro
methyl ester3. In addition, Selvakumar and co-workers20

and Ruhland et al.21 have respectively used the SNAr
displacement of fluorine on ano-nitrofluorobenzene with
activated enolates, including malonates, for the solution-phase
syntheses of heterocycles. Thus, for initial reaction optimiza-
tion, 4-fluoro-3-nitrobenzoic acid was attached to polystyrene
Rink amide SynPhase D-series lanterns1 using a standard
coupling procedure (Scheme 2) to give2.22a Treatment of
the lanterns2 with dimethyl malonate/potassium bis(tri-
methylsilyl)amide (KHMDS) in NMP/toluene (1:1) at 60°C
for 4 h gave the arylnitro methyl ester3 in 95% purity. This
was confirmed by LC-MS and1H NMR analysis of the
cleaved product.23 The arylnitro methyl ester3 was then
treated with a solution of 0.5 M tin(II) chloride dihydrate in
NMP at room temperature for 4 h to give theN-hydroxy-
indolone4 in 94% purity. The determination of the structure
of theN-hydroxyindolone4, however, was more complicated
than expected. Although the molecular weight 250 as shown
by LC-MS (ES) was consistent with the proposed target
molecule, the1H NMR indicated that it appeared to be a
mixture of theN-hydroxyindolone4 and its tautomer 1,2-
dihydroxyindole 5. It was hoped that alkylation of the

hydroxyl groups would stop the tautomerization, thereby
assisting the elucidation of the structure. The solid-bound
N-hydroxyindolone4 was thus exposed to a solution of
benzyl bromide in DMF at 60°C for 18 h to give a product
in 90% purity. LC-MS analysis clearly indicated that it was
an alkylated derivative of4. However, its1H NMR showed
that it was not the expectedN-alkoxyindolone7, since there
were only two types of aliphatic protons, with three protons
(δ ) 3.71 ppm) corresponding to the methoxy group and
two protons (δ) 3.64 ppm) corresponding to the benzylic
methylene group. This confirmed that the alkylated product
was the N-hydroxy-2-benzyloxyindole6 rather than the
expected N-benzyloxyindolone7 (R1 ) benzyl). It is
presumed that the enol-like 2-hydroxy group of the 1,2-
dihydroxyindole5 is more nucleophilic than theN-hydroxy
group, and the former was preferentially alkylated. Further-
more, it was observed that a partial second alkylation (on
the N-hydroxy group of6) occurred when the reaction was
conducted for an extended time and under more forcing
conditions (e.g., 80°C). This observation has opened up a
new methodology for the solid-phase synthesis of indoles
and in particular 1,2-dialkoxyindoles, which have not been
previously reported.

A selection of alkyl halides were reacted with the
N-hydroxyindolone4 using the above-mentioned mild alkyl-
ating conditions to give theN-hydroxy-2-alkoxyindoles6.
To introduce a second point of diversity into the indole
molecule via theN-hydroxy group, a variety of stronger
alkylating conditions were attempted. For example, bases
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Scheme 1. Retrosynthesis ofN-Hydroxyindolone on SynPhase
Lanterns

Scheme 2. Solid-Phase Synthesis of 1,2-Dialkoxyindoles on
SynPhase Lanterns
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such as NaOCH3, NaH, KHMDS, DBU, or DIEA were used
to deprotonate theN-hydroxy group, while KI was added to
facilitate the nucleophilic displacement. After some experi-
mentation, theN-hydroxy-2-benzyloxyindole6 (R1 ) benzyl)
upon treatment with 3-methoxybenzyl bromide in the pres-
ence of KI and DIEA in DMF at 60°C for 18 h was cleanly
converted to the 1,2-dialkoxyindole9 (R1 ) benzyl, R2 )
3-methoxybenzyl) in good purity (77%). The structure of
the 1,2-dialkoxyindole9 was confirmed by LC-MS,1H
NMR, and13C NMR. Using the above-mentioned alkylating
conditions afforded 1,2-dialkoxyindoles9 when a variety of
R2X were reacted with theN-hydroxy-2-benzyloxyindole6.

To demonstrate the application of this new methodology
for the solid-phase synthesis of 1,2-dialkoxyindoles, we
synthesized a library of 64 (8R1 × 8R2) 1,2-dialkoxyindoles
on SynPhase A-series lanterns,22awhich have approximately
twice the loading of D-series lanterns (75 vs 35µmol). It
should be pointed out that since the chemical reactions can
be freely transferred between SynPhase A-, D-, and L-series
lanterns, no reoptimization was required for the library
synthesis.22b To facilitate the library synthesis, a color

encoding directed split-and-pool technique was employed.
Thus, 64 lanterns4 were divided into 8 groups of 8 lanterns
and each group of lanterns were attached to colored
Spindles22c (for R1, 8 colors in total), as shown in Figure 1.
To each of the Spindle-attached lanterns was loaded a colored
Cog (for R2, 8 colors in total, Figure 1). For the first
combinatorial step, the lanterns4 with the same color
Spindles were pooled together to react with one of 8× R1X
(8 reactions in total). After the reaction, all lanterns were
combined for washing to give the lantern-boundN-hydroxy-
2-alkoxyindoles6. For the second combinatorial step, the
lanterns6 with the same color Cogs were pooled together
to react with one of 8× R2X (8 reactions in total). All
lanterns were then combined for washing to give 64 discrete
lantern-bound 1,2-dialkoxyindoles9. Each lantern-bound 1,2-
dialkoxyindole can be simply identified by the color of the
attached Spindle (for R1) and Cog (for R2). Upon TFA
cleavage, 1,2-dialkoxyindoles9 were obtained typically in
75% purity and in 80% yield based on the initial loading of
lanterns (Table 1). The whole library was analyzed by LC
and LC-MS, and selected samples were characterized by1H
and13C NMR (see Supporting Information).

In conclusion, a novel methodology for an efficient and
convenient solid-phase synthesis of indoles was developed
on SynPhase D-series lanterns, which involves the formation

(24) Typical procedure for the synthesis of 1,2-dialkoxyindole9 from
lantern-bound 4-fluoro-3-nitrobenzoic acid2: Each A-series lantern2 was
treated with 1.0 mL of a solution of 0.25 M dimethyl malonate and 0.25 M
potassium bis(trimethylsilyl)amide in NMP/toluene (1:1) at 60°C for 4 h.
The reagent solution was decanted, and the lanterns were washed with DMF
(3 × 3 min) and DCM (3× 2 min) and air-dried to give3. Each lantern3
was treated with 1.0 mL of a solution of 0.5 M tin(II) chloride dihydrate in
NMP at room temperature for 4 h. The reagent solution was decanted, and
the lanterns were washed with DMF (3× 3 min), 20% H2O/THF (60°C,
4 × 10 min), MeOH (2× 3 min) and DCM (3× 2 min) and air-dried to
give 4. Each lantern4 was treated with 1.0 mL of a solution of 0.5 M alkyl
halide (R1Br) in DMF at 60°C for 18 h. The reagent solution was decanted,
and the lanterns were washed with DMF (3× 3 min) and DCM (3× 2
min) and air-dried to give6. Each lantern6 was treated with 1.0 mL of a
solution of 1.0 M alkyl halide (R2Br), 1.0 M DIEA, and 1.0 M KI in
anhydrous DMF at 60°C for 18 h. The reagent solution was decanted, and
the lanterns were washed with DMF (5× 3 min), MeOH (60°C, 4 × 10
min), DCM (3 × 2 min) and air-dried to give8. Each lantern8 placed in
a well of a Beckmann tray was treated with 1.2 mL of 20% TFA/DCM for
1 h. The lanterns were removed, and the cleavage solution was evaporated
in a SpeedVac to give the final product9, which was dissolved in 10%
H2O/CH3CN for LC and LC-MS analysis.

Table 1. Purity and Yield of 1,2-Dialkoxyindoles9a (Scheme 2)

R2

R1 allyl propyl benzyl 3-chlorobenzyl 4-tert-butylbenzyl 4-fluorobenzyl 3-methoxybenzyl 3-methylbenzyl

allyl 84 (85) 83 (87) 85 (88) 76 (80) 76 (75) 81 (84) 67 (70) 72 (75)
benzyl 73 (80) 71 (80) 79 (83) 76 (81*) 78 (80) 80 (81*) 77 (80*) 73 (75)
4-fluorobenzyl 76 (80*) 80 (83) 75 (80) 64 (70) 74 (75) 80 (85) 78 (79) 54 (60)
3-methoxybenzyl 70 (75) 82 (85) 79 (84) 64 (70) 65 (70) 70 (71*) 73 (75) 73 (77)
4-methylbenzyl 63 (70) 80 (82) 73 (73) 73 (72) 66 (70) 75 (77) 65 (70) 82 (85)
4-bromobenzyl 75 (77) 79 (80) 67 (70) 77 (78) 75 (78) 79 (80) 66 (70) 74 (76)
3-chlorobenzyl 69 (70) 77 (81) 64 (70) 66 (72) 70 (73) 69 (70) 66 (65) 70 (70)
3,5-difluorobenzyl 59 (66) 67 (70) 56 (65) 55 (65) 51 (55) 59 (60) 53 (55) 77 (75)

a Notes: (1) HPLC purities are given as area %; (2) all compounds gave the expected molecular ions in positive ion ESMS; (3) selected samples gave
satisfactory1H and13C NMR spectra; (4) crude yields given in parentheses were based on the weight of dried samples and were consistent with the1H NMR
quantitation results of selected samples* using 1,1,1-trichloroethane as an internal standard.

Figure 1. Color encoding directed split-and-pool library synthesis
on SynPhase lanterns.
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of the key intermediateN-hydroxyindolone and subsequent
conversion to 1,2-dialkoxyindoles by consecutive alkylations.
This methodology has been used to synthesize a library of

64 discrete 1,2-dialkoxyindoles on SynPhase A-series lan-
terns.24,25
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Supporting Information Available: Analytical data of
LC, LC-MS, and NMR for the selected 1,2-dialkoxyindoles.3

This material is available free of charge via the Internet at
http://pubs.acs.org.

OL035153G

(25) Representative analytical data of 1,2-dialkoxyindole9 (R1 ) benzyl,
R2 ) 3-methoxybenzyl): brown oil, 28 mg, yield 77% (“purified yield”
62%, as determined by1H NMR quantitation);1H NMR (400 MHz, CDCl3)
δ 3.62 (dd, AB system,J ) 13.6 Hz, 2 H), 3.74 (s, 3 H), 3.77 (s, 3 H),
4.53 (d,J ) 10.8 Hz, 1 H), 4.89 (d,J ) 10.8 Hz, 1 H), 6.66 (d,J ) 7.2
Hz, 1 H), 6.78 (s, 1 H), 6.90-6.86 (m, 4 H), 7.19-7.07 (m, 4 H), 7.44 (d,
J ) 8 Hz, 1 H), 7.56 (d,J ) 8 Hz, 1 H);13C NMR δ 39.61, 53.55, 55.33,
59.44, 78.75, 106.82, 114.97, 115.45, 122.26, 122.86, 124.42, 127.51,
128.05, 128.19, 129.72, 130.11, 132.86, 133.30, 135.37, 141.58, 159.79,
160.09, 160.49, 168.19, 168.36, 171.09; LC-MS (ES)tR 8.11 min,m/z)
461 (M + H); HPLC tR 8.34 min, 77% (214 nm). For more analytical data
of library members, see Supporting Information.
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